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Abstract
The Yang–Baxter equation for an SU(2)×U(1)-symmetric S = 1

2 spin-orbital
chain was solved using the special computer algorithm developed by the author.
The seven new R-matrices separated into four groups are presented. Among the
obtained integrable models there are special cases related to 1D ferromagnet
TDAE − C60, 1D superconductors AC60 (A = K, Cs, Rb), the quarter-filled
ladder compound NaV2O5 and the model of correlated electrons on a chain of
Berry phase molecules.

PACS numbers: 75.10.Jm, 75.10.Lp

1. Introduction

At the beginning of the 1970s Kugel and Khomskii [1] and, independently, Inagaki [2]
suggested two various models to describe magnetic properties of solids with orbital degeneracy
in electron systems of atoms. Starting from the two-band Hubbard model [3] they obtained
low-energy Hamiltonians depending on both spin and pseudospin (orbital) operators. Kugel
and Khomskii took into account geometry of d-orbitals entailing asymmetry of hopping
integrals and obtained a general but realistic Hamiltonian. In contrast, Inagaki postulating the
symmetric hopping distinguished between the Coulomb repulsions on the same and different
orbitals. It was suggested in [1–3] that a non-trivial coupling between spin and orbital terms
would result in a complex magnetic behaviour such as a ferromagnetism induced by orbital
ordering.

While the spin dependence of the Hamiltonians [1, 2] has purely an SU(2)-invariant
Heisenberg form, its dependence upon pseudospin is more complicated and in the simplest
case possess only the U(1) symmetry related to rotations along the z axis in the pseudospin
space.

After the works [1, 2] some new applications of SU(2)×U(1)-invariant spin models were
suggested in a number of papers [4–10]. Ground state and excitations of some SU(2)×U(1)-
invariant spin chains were studied in [11, 12].
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The most elaborated approach for exact detailed analysis of a one-dimensional integrable
spin chain was suggested by Faddeev and his school Quantum Inverse Scattering Method
(Algebraic Bethe Ansatze) [13–15]. The latter is described by a Hamiltonian

Ĥ =
N∑

n=1

Hn,n+1, (1)

acting on the finite-dimensional space (CM)⊗N (M = 2, 3, 4, . . .). Each term Hn,n+1 acts
nontrivially as an M2 × M2-matrix H only on the tensor product of two neighbour spaces
C

M
n ⊗ C

M
n+1.

The keystone of this approach is the Yang–Baxter equation

R12(λ − µ)R23(λ)R12(µ) = R23(µ)R12(λ)R23(λ − µ), (2)

with the initial regularity condition

R(0) = cI. (3)

Here R(λ) is an M2 ×M2 matrix, I is the matrix unity while c is an arbitrary non-zero constant.
If the Hamiltonian density matrix H relates to R(λ) by the following formula:

H = ∂R(λ)

∂λ

∣∣∣∣
λ=0

, (4)

then the system (1) is integrable.
In [16], a new method was suggested for solving equations (2) and (3). It is based on the

series expansion for R-matrix:

R(λ) =
∞∑

n=0

1

n!
R(n)λn, (5)

where

R(1) = H,

R(2) = H 2,

R(3) = H 3 + K,
(6)

R(4) = H 4 + 2(HK + KH),

R(5) = H 5 + L + 2(KH 2 + H 2K) + 6HKH,

R(6) = H 6 + KH 3 + H 3K + 9(H 2KH + HKH 2) + 10K2 + 3(HL + LH).

The matrices K and L may be obtained from the following integrability conditions [13, 16, 17]:

K23 − K12 = [H12 + H23, [H12,H23]],

L23 − L12 = [
H 3

12 + H 3
23 + 3(K12 + K23), J

]
+ 3(H12[J,H12]H12 + H23[J,H23]H23)

(7)
+ (H12H23 + H23H12)(K23 − K12) + (K23 − K12)(H12H23 + H23H12)

− 2(H12(K23 − K12)H23 + H23(K23 − K12)H12),

where J = [H12,H23].
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As equation (2), equations (6) and (7) are invariant under the following Q ∈ SL(M)

action:

X → Q−1 ⊗ Q−1XQ ⊗ Q, (8)

Q ∈ SL(M),X = H,K,R(λ).
In [16], it was shown that a detailed analysis of series expansions applied to quotients

of the R-matrix entries gives possibility of guessing right the whole R-matrix. An alternative
approach for solving systems (2) and (3) is given in the recent paper [19].

In the following sections, we shall present the R-matrices obtained by our approach related
to the general SU(2) × U(1)-symmetric spin–orbit Hamiltonian

Hn,n+1 = (snsn+1)
(
a1 + a2

(
τ x
n τ x

n+1 + τ y
n τ

y

n+1

)
+ a3τ

z
nτ z

n+1 + 1
2a6

(
τ z
n + τ z

n+1

))

+ a4
(
τ x
n τ x

n+1 + τ y
n τ

y

n+1

)
+ a5τ

z
nτ z

n+1 + 1
2a7

(
τ z
n + τ z

n+1

)
, (9)

which may be parameterized by the set of coefficients S = {a1, a2, . . . , a7}. Here in (9) the
spin and pseudospin operators are expressed from the Pauli matrices

sk = 1
2σ k ⊗ I2, τ k = 1

2I2 ⊗ σ k, k = x, y, z. (10)

The following change of coefficients

{a1, a2, a3, a4, a5, a6, a7} → {a1, a2, a3, a4, a5,−a6,−a7} (11)

does not destroy an integrability or change the spectrum of Hamiltonian because it corresponds
to the transformation (8) with Q = I2 ⊗ σx .

For a chain with even numbers of sites the same is true for the following change of
variables:

{a1, a2, a3, a4, a5, a6, a7} → {a1,−a2, a3,−a4, a5, a6, a7}, (12)

which corresponds to the graduated version of (8).

H2n,2n+1 → 4τ z
2nH2n,2n+1τ

z
2n, H2n−1,2n → 4τ z

2nH2n−1,2nτ
z
2n. (13)

The case

SKH = {1 − α, 0, 4(1 + α), 0, 1 + α, 4,−1} (14)

corresponds to the Kugel–Khomskii model of 1D perovskite [1].
The case

SI = {
1
2 (α − β) + γ, 2(α + β), 2(2γ + β − α), 1

2 (3β − α), 1
2 (3β + α − 2γ ), 0, 0

}
, (15)

(where the unphysical region α ≈ β ≈ γ , but β > α and β > γ ) corresponds to Inagaki’s
model [2]. In [4], it was also applied to organic 1D ferromagnet TDAE − C60 and in [5] to
the family of 1D superconductors AC60 (A = K, Cs, Rb) (with Tc > 30 K).
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The special case of (15) with

α = 1 − δ, β = 1 + δ, γ = 1 − δ2, (16)

(where in the physical region 0 < δ < 1) was studied in [6].
The two cases

S
NaV2O5
1 = {α, 8β, 4α, 2β, 4β − α, 0, 0}, (17)

S
NaV2O5
2 = {−α, 4α, 4α, 3α, 3α,−4β, β}, (18)

correspond to limiting cases of the model describing the quarter-filled ladder compound
α′ − NaV2O5 [7].

The case

Sst = {1, 2, 0, 0, 0, 0, 0} (19)

corresponds the effective spin-tube Hamiltonian suggested in [8].
Let us also mention the paper [9] where the spin-orbital Hamiltonian was applied to arrays

of quantum dots.
In the special SU(4)-symmetric point

SSU(4) = {1, 4, 4, 1, 1, 0, 0}, (20)

the model (20) was solved in [18] (R(λ) = ηI + λP). This point corresponds to degenerative
cases of (15) (α = β = γ ) (or δ = 0). Using the transformations (12) and (13), we may
obtain the R-matrix for the model with

S̃SU(4) = {1,−4, 4,−1, 1, 0, 0}. (21)

In the special Sp(4)-symmetric point

SSp(4) = {1, 4, 8, 2, 1, 0, 0}, (22)

(equivalent to S̃Sp(4) = {1,−4, 8,−2, 1, 0, 0}) related to 3α = β = γ in (17) the R-matrix
was presented in [20].

Except (20) and (22) no integrable cases of the Hamiltonian (9) were studied up to now.
In order to start this process we have solved systems (2), (3) related to (9). The calculations
were performed by two steps. In the first, using the Gröbner package of the computer algebra
system MAPLE 7 we have found seven new solutions of system (7). In the second, we derived
the corresponding R-matrices using the approach suggested in [16, 19].

For convenience of representation the obtained R-matrices are separated into four groups.
In each one all R-matrices have similar positions of non-zero entries, therefore they may be
presented in a unique form.

Everywhere below ε = ±1.

2. The group 1

In this group, the R-matrix corresponds to

S(1) = {0, 4, 0, 1, 0, 4ε, ε}, (23)
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and has the following form:

R(1)(λ) =




f+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 η 0 0 g1 0 0 0 0 0 0 0 0 0 0 0

0 0 η 0 0 0 0 0 g2 0 0 0 0 0 0 0

0 0 0 η 0 0 0 0 0 0 0 0 g1 0 0 0

0 g1 0 0 η 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 f− 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 η 0 0 g1 0 0 0 0 0 0

0 0 0 0 0 0 0 η 0 0 0 0 0 g3 0 0

0 0 g2 0 0 0 0 0 η 0 0 0 0 0 0 0

0 0 0 0 0 0 g1 0 0 η 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 f+ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 η 0 0 g1 0

0 0 0 g1 0 0 0 0 0 0 0 0 η 0 0 0

0 0 0 0 0 0 0 g3 0 0 0 0 0 η 0 0

0 0 0 0 0 0 0 0 0 0 0 g1 0 0 η 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f−




,

(24)

where f± = ±ελ + η, g1 = λ, g2 = −g3 = ελ.

3. The group 2

This group consists of two related subgroups. For the first one the R-matrix is the following:

R(2a)(λ)=




f+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 η 0 0 g1 0 0 0 0 0 0 0 0 0 0 0

0 0 η 0 0 0 0 0 g2 0 0 0 0 0 0 0

0 0 0 η 0 0 0 0 0 0 0 0 g1 0 0 0

0 g1 0 0 η 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 f− 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 η 0 0 g1 0 0 0 0 0 0

0 0 0 0 0 0 0 f− 0 0 0 0 0 0 0 0

0 0 g2 0 0 0 0 0 η 0 0 0 0 0 0 0

0 0 0 0 0 0 g1 0 0 η 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 f+ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 η 0 0 g1 0

0 0 0 g1 0 0 0 0 0 0 0 0 η 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 f− 0 0

0 0 0 0 0 0 0 0 0 0 0 g1 0 0 η 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f−




,

(25)
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and there are two solutions. The first one

S(2a,1) = {1, 8ε, 4, 2ε, 3, 4,−1} (26)

corresponds to f+ = f− = λ + η, g1 = −g2 = ελ. The second

S(2a,2) = {1, 8ε, 4, 2ε,−1, 4, 3} (27)

corresponds to f± = η ± λ, εg1 = g2 = λ.
For the second subgroup, the corresponding Hamiltonians may be obtained from (26),

(27) by the transformation (11), while the R-matrices may be obtained by transposition with
respect to the second diagonal.

4. The group 3

In this group, R-matrices have the form

R(3)(λ) =




f+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 h 0 0 g 0 0 0 0 0 0 0 0 0 0 0
0 0 f+ 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 h 0 0 0 0 0 0 0 0 g 0 0 0
0 g 0 0 h 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 f− 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 h 0 0 g 0 0 0 0 0 0
0 0 0 0 0 0 0 f− 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 f+ 0 0 0 0 0 0 0
0 0 0 0 0 0 g 0 0 h 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 f+ 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 h 0 0 g 0
0 0 0 g 0 0 0 0 0 0 0 0 h 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 f− 0 0
0 0 0 0 0 0 0 0 0 0 0 g 0 0 h 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f−




.

(28)

There are two solutions. The first one corresponds to

S(3,1) = {0, 4, 0, 1, θ, 0, 0}. (29)

Here f+ = f− = sinh(λ + η) for θ = 2 cosh η > 2, f+ = f− = sin(λ + η) for θ = 2 cos η < 2
and f+ = f− = λ + η for θ = 2. The latter solution is related to the special case of (15) with
α = β and γ = 0 as well to the special case of (17) with α = 0.

The second solution corresponds to

S(3,2) = {0, 4, 0, 1, 0, 0, θ}. (30)

Here f± = sinh(η ± λ) for θ = 2 cosh η > 2, f± = sin(η ± λ) for θ = 2 cos η < 2 and
f± = η ± λ for θ = 2. In both the cases g = sinh λ, h = sinh η for θ > 2, g = sin λ, h = sin η

for θ < 2, and g = λ, h = η for θ = 2.
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5. The group 4

In this group, R-matrices have the form

R(4)(λ) =




f1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 f2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 f1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 f3 0 0 −g1 0 0 g2 0 0 g1 0 0 0
0 0 0 0 f2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 f1 0 0 0 0 0 0 0 0 0 0
0 0 0 −g1 0 0 f3 0 0 g1 0 0 g2 0 0 0
0 0 0 0 0 0 0 f1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 f1 0 0 0 0 0 0 0
0 0 0 g2 0 0 g1 0 0 f3 0 0 −g1 0 0 0
0 0 0 0 0 0 0 0 0 0 f1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 f2 0 0 0 0
0 0 0 g1 0 0 g2 0 0 −g1 0 0 f3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 f1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 f2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f1




,

(31)

where g2 = f2 − f3.
There are two solutions. The first one corresponds to

S(4,1) = {1, 4ε,−4,−ε, 1, 0, 0}, (32)

where f1 = f2 = sinh(λ+η), εg1 = g2 = sinh λ, f3 = sinh(λ+η)−sinh λ, sinh η = √
3. For

ε = 1, this model is the special case of (15) with β = γ = 0. For ε = −1, it is SU(2)×SU(2)-
symmetric (in fact SU(4)-symmetric [21]), and as was mentioned in [11] it corresponds to
the four-critical point in the phase diagram of the ferromagnetic SU(2) × U(1)-symmetric
spin-orbital model. This model was also suggested in [10] as a model of correlated electrons
in a lattice of Berry phase molecules. It was also shown in [19] that it is a Temperly–Lieb
system [22].

The second solution corresponds to

S(4,2) = {2, 4ε,−8,−ε, 5, 0, 0}, (33)

where f1 = f2eλ = 4e2λ − 1, f3 = 2eλ + e−λ, g1 = ε(1 − e−2λ), g2 = 4sinh λ.
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